Critical and Subcritical Jacobi Operators Defined as Friedrichs Extensions
نویسندگان
چکیده
منابع مشابه
Unbounded operators, Friedrichs’ extension theorem
Explicit naming of the domain of an unbounded operator is often suppressed, instead writing T1 ⊂ T2 when T2 is an extension of T1, in the sense that the domain of T2 contains that of T1, and the restriction of T2 to the domain of T1 agrees with T1. An operator T ′, D′ is a sub-adjoint to an operator T,D when 〈Tv,w〉 = 〈v, T ′w〉 (for v ∈ D, w ∈ D′) For D dense, for given D′ there is at most one T...
متن کاملUnbounded operators and the Friedrichs extension
In this note, by A ⊂ B, I mean that A is contained in B, and it may be that A = B; usually I write this by A ⊆ B, but A ⊂ B fits with the usual notation for saying that an operator is an extension of another. In this note, unless we say otherwise H denotes a Hilbert space over C, and we do not presume H to be separable. We shall write the inner product 〈·, ·〉 on H as conjugate linear in the sec...
متن کاملLax – Friedrichs sweeping scheme for static Hamilton – Jacobi equations q
We propose a simple, fast sweeping method based on the Lax–Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton–Jacobi equations in any number of spatial dimensions. By using the Lax–Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss–Seidel type nonlinear ite...
متن کاملOn the wave operators for the Friedrichs-Faddeev model
We povide new formulae for the wave operators in the context of the Friedrichs-Faddeev model. Continuity with respect to the energy of the scattering matrix and a few results on eigenfunctions corresponding to embedded eigenvalues are also derived.
متن کاملProbabilistic Averages of Jacobi Operators
I study the Lyapunov exponent and the integrated density of states for general Jacobi operators. The main result is that questions about these can be reduced to questions about ergodic Jacobi operators. I use this to show that for finite gap Jacobi operators, regularity implies that they are in the Cesàro–Nevai class, proving a conjecture of Barry Simon. Furthermore, I use this to study Jacobi ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1993
ISSN: 0022-0396
DOI: 10.1006/jdeq.1993.1042